كما يمكن استخدام التعلم العميق في تحليل النصوص، حيث يمكن للأنظمة تعلم الأنماط والمعاني في النصوص العربية واستخلاص المعلومات الهامة منها.
من أجل تحقيق التقدم والاستفادة الكاملة من العمق في مجال التعلم الآلي، يجب اتخاذ التدابير اللازمة للتغلب على هذه التحديات وتطوير الحلول المناسبة.
التعلم المعزز هو أسلوب يتم فيه إرفاق قيم معطاة بأنواع مختلفة من الخطوات التي يجب على اللوغاريتم المرور بها. لذا، هدف النموذج هو تجميع أكبر قدر من نقاط المعطيات والوصول في النهاية إلى هدف نهائي.
أما في حالة التعلم العميق، كل ما هو مطلوب هو تزويد النظام بعدد كبير جدًا من صور القطط، ويُمكن للنظام أن يتعلَّم بشكلٍ مُستقل السمات التي تُمثِّل القطّة.
تحتوي شبكات التعلم العميق على مئات من الطبقات المخفية التي يمكنها استخدامها في تحليل مشكلة من عدة زوايا مختلفة.
باستخدام أحدث المراجع العلمية وخبرات المؤلف، تم تجميع هذا الكتاب وتجميعه لمجموعة واسعة من الباحثين والطلاب وأصحاب الصناعة والمهتمين بالتعلم العميق حتى يتمكنوا من اكتساب المعرفة الكافية بالمبادئ والمفاهيم الأساسية في هذا المجال. أيضًا، نظرًا لأن هذا الكتاب يغطي المواد اللازمة لدورة التعلم العميق في الدراسات العليا، فيمكن أن يكون مرجعًا جيدًا لهذه الدورة بالإضافة إلى الدروس الاختيارية لطلاب السنة النهائية الجامعيين في هندسة الكمبيوتر.
تسمية البيانات هي عملية يتم فيها تصنيف بيانات المدخلات بالنسبة لقيم المخرجات المعرّفة المقابلة لها. يلزم تسمية بيانات التدريب بالنسبة لأسلوب التعلم تحت الإشراف. على سبيل المثال، ملايين من صور التفاح والموز يجب وسمها بعلامة باستخدام الكلمتين "تفاح" أو "موز". ثم انقر على الرابط تستطيع تطبيقات التعلم الآلي استخدام بيانات التدريب هذه لتخمين اسم الفاكهة عند إعطائها صورة فاكهة.
كتاب التعمق في التعلم العميق: الجزء الثالث: قابلية التوسع والكفاءة والتطبيقات
على سبيل المثال، إذا تم إعطاؤك صورة لحيوان غير معروف وكان عليك تصنيفه، فسوف تقارنه بالحيوانات التي تعرفها بالفعل. على سبيل المثال، يمكنك أن تنظر إلى شكل عينيه وأذنيه، وحجمه، وعدد أرجله، ونمط فراءه.
على سبيل المثال، إذا تم إعطاؤك صورة لحيوان غير معروف وكان عليك تصنيفه، فستقارن هذا الحيوان بالحيوانات التي تعرفها بالفعل.
صفحات للمحررين الذين سجَّلوا خروجهم تعلَّم المزيد مساهمات
في السنوات الأخيرة ، أصبح التعلم العميق المحرك الرئيسي للحلول المبتكرة لمشاكل الذكاء الاصطناعي ، والتي أصبحت ممكنة من خلال زيادة كمية البيانات المتاحة، وزيادة موارد الحوسبة وتحسين التقنيات في التدريب على الشبكة العميقة.
تتكوّن شبكة التعلم العميق من طبقات من الخلايا العصبيّة الاصطناعية والاتصالات المعقدة، وهي عبارة عن بنية مُعقّدة مُصمّمة للتعلم والتنبؤ من البيانات، وفيما يلي نبذة سريعة عن هذه الطبقات:
تواجه التعلم العميق تحديات مستمرة مثل معالجة حجم البيانات الكبيرة وضمان خصوصية البيانات.
Comments on “A Secret Weapon For التعلم العميق”